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Abstract. A numerical study is presented for steady incompressible vis-
cous MHD asymmetric flow of an electrically conducting fluid between
two infinite parallel stationary coaxial porous disks of different perme-
ability in the presence of a transverse magnetic field. The main flow is
superimposed by a constant injection at the surfaces of the disks. The gov-
erning non linear partial differential equations together with the boundary
conditions are reduced to non linear ordinary one using Von Karman’s
similarity transformation. An algorithm based on finite difference dis-
cretization is used to solve the obtained boundary value problem. The
results are presented in tabular and graphical forms to discuss important
features of the flow. Comparisons with the previously published litera-
ture work are found to be in a good agreement in the absence of magnetic
field. The present investigations show that magnetic field enhances shear
stresses. The position of viscous layer changes with the permeable para-
meter.
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1. INTRODUCTION

The phenomenon of fluid motion between parallel disks has been of considerable in-
terest due to its diversity of significant applications in the fields of hydrodynamical ma-
chines and apparatus, magnetic storage devices (disk drives), semiconductor manufac-
turing processes with rotating wafers, gas turbine engines, and other rotating machin-
ery, viscometry, heat and mass exchanges, computer storage devices, lubrication, crystal
growth processes, geothermal, geophysical, oceanography, biomechanics and in the de-
sign of thrust bearings, and radial diffusers etc. Magnetohydrodynamics (MHD) flow has
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important applications in MHD pumps, aerodynamics heating, MHD power generators,
accelerators, purification of crude oil, petroleum industries and polymer technology.

Siddique et. al [1] presented a new exact solution for MHD transient rotation flow of
a second grade fluid in a porous space. Khan et. al [2] discussed MHD flows of a sec-
ond grade fluid between two side walls perpendicular to a plate through a porous medium.
Hayat et. al [3] studied analytically the effects of radiation on MHD flow of a Maxwell
fluid in a channel with porous medium. Some exact solutions for the helical flow of a gen-
eralized Oldroyd-B fluid in a circular cylinder were presented by Fetecau et. al [4]. Ashraf
et. al [5] solved numerically the problem of MHD stagnation point flow of a micropolar
fluid towards a heated surface. Rudraiah and Chandrasekhara [6] considered the problem
of MHD flow between parallel porous disks for large suction Reynolds number using per-
turbation technique. Rasmussen [7] investigated numerically the problem of steady viscous
symmetric flow between two infinite parallel porous coaxial disks with uniform injection/
suction. The theorem of existence and uniqueness for non rotational fluid motion between
two infinite coaxial and permeable disks was proved by Elcrat [8]. The flow between two
porous coaxial disks of different permeability with heat and mass transfer was analyzed by
Guar and Chaudhary [9]. An exact solution for the problem of steady viscous flow between
two parallel disks was given by Phan-Thien and Bush [10]. The fluid motion was gener-
ated due to different injection/ suction velocities through the surfaces of the porous disks.
Asymmetric flow between parallel rotating disks was considered by Rajagopal et. al [11]
and numerical results were presented for the rotation about a common axis and the rotation
about two distinct axes for a set of values of the governing parameters. Rajagopal et. al
[12]] investigated asymmetric flow above a rotating disk to obtain the solutions that corre-
spond to the flow induced by the rotation of a disk moving with a constant uniform velocity.
Experimental and numerical methods were presented by Singh et.al [13] to study the ef-
fect of acceleration on flow field. Attia [14] studied the problem of steady incompressible
viscous flow and heat transfer of an electrically conducting fluid due to the rotation of an
infinite non conducting porous disk in the presence of a uniform external magnetic field by
considering the ion slip. The fluid motion was subjected due to the uniform injection/ suc-
tion at the two disks. The transformed non linear differential equations together with the
boundary conditions were solved numerically using the finite difference discretization. Er-
soy [15] analyzed linearly viscous fluid flow between two disks rotating about two distinct
vertical axes. An approximate analytical solution was given to present the dependence of
velocity components on the position, the Reynolds number, the eccentricity, and the ratio
of angular speeds of the disks. An exact solution for the problem of steady incompress-
ible axisymmetric flow between two stretchable infinite disks in the absence of the body
force was analyzed by Fang and Zhang [16] using an extension of Von Karman’s similarity
transformation to discuss the effects of disk stretching and stretching Reynolds number.
The squeezed film flow between two rotating permeable disks was investigated by Bhatt
and Hamza [17] using a suitable similarity solution.

Our main goal here is to address a comprehensive parametric study of flow of an asym-
metric steady incompressible viscous electrically conducting fluid between two stationary
coaxial infinite parallel porous disks of different permeability in the presence of uniform
magnetic field which was not considered by previous authors. By using a finite difference
scheme, a numerical solution is obtained for the governing momentum equation.
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2. PROBLEM FORMULATION

We make use of the cylindrical polar co ordinate system (r, θ, z) for the physical prob-
lem under consideration. This study considers the case of an asymmetric steady laminar
incompressible viscous flow of an electrically conducting fluid confined between two large
stationary porous disks of infinite radii coinciding with the planes z = ±a with constant
injection velocities V1 and V2 at the lower and upper disks respectively in the presence of
a uniform transverse magnetic field of intensity B0 as shown in Fig. 1.
In order to examine the effects of different permeability of the disks, we define the follow-
ing permeability parameter:

A = 1− V1

V2
, (2. 1)

Following works of Hayat and Wang [18] the governing equations for steady viscous flow
of an electrically conducting fluid in the presence of a uniform stationary magnetic field
can be written as:

∂ρ

∂t
+∇ · (ρ V ) = 0, (2. 2)

∂V

∂t
+ (V · ∇) V = f − 1

ρ
∇p + υ∇2V , (2. 3)

∇ ·B = 0, (2. 4)
∇×B = µmJ, (2. 5)
∇× E = 0, (2. 6)

J = σe(E + V ×B), (2. 7)
where ρ is the density, ∇ the gradient, V the fluid velocity vector, υ kinematic viscosity,
p the pressure, J the current density, B the total magnetic field so that B = B0 + b, b the
induced magnetic field, µm the magnetic permeability, E the electric field, σe the electrical
conductivity of the fluid and dot signifies the material derivative. Moreover ∇ · J = 0 is
obtained from Eqs. (2. 4 ) and (2. 5 ).

The uniform stationary magnetic field B is in the transverse direction and the magnetic
Reynolds number is taken small [19]. As a consequence the induced magnetic field b is
neglected. We further assume that there is no electric field (i.e.E = 0) because there is
no applied polarization voltage. This means that no energy is extracted or added to the
fluid system. By employing the above flow assumptions, the electromagnetic body force
occurring in Eq. (2. 3 ) takes the following lineralized form [20]:

f = J ×B = σe[(V ×B0)×B0] = (−σeB
2
0u, 0, 0). (2. 8)

The components of velocity (u, v, w) along radial, transverse, and axial directions for the
present problem can be written as:

u = u(r, z), v = 0, w = w(r, z). (2. 9)

In view of Eqs. (2. 4 )-(2. 8 ), the governing Eqs. (2. 2 )-(2. 3 ) for an electrically conduct-
ing incompressible fluid in the presence of a uniform magnetic field are given in dimen-
sionless form as:

∂u

∂r
+

u

r
+

1
a

∂w

∂η
= 0, (2. 10)

ρ(u
∂u

∂r
+

w

a

∂u

∂η
) = −∂p

∂r
+ µ(

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2
+

1
a2

∂2u

∂η2
)− σeB

2
0u, (2. 11)

ρ(u
∂w

∂r
+

w

a

∂w

∂η
) = −1

a

∂p

∂η
+ µ(

∂2w

∂r2
+

1
r

∂w

∂r
+

1
a2

∂2w

∂η2
), (2. 12)
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where η = z
a is a similarity variable.

The boundary conditions at the two porous disks for the velocity field are specified as
follows:

u(r,−1) = 0, u(r,+1) = 0,
w(r,−1) = V1, w(r,+1) = V2.

]
(2. 13)

Where V1 and V2 are uniform injection velocities at the lower and upper disks respectively.
A similarity transformation similar to those of Von Karman [21] and Elkouh [22] can

be used to reduce partial differential equations (2. 10 )-(2. 12 ) into ordinary differential
equations as follows:

ψ(r, η) =
V2r

2

2
f(η), (2. 14)

u =
1
ra

∂ψ

∂η
=

V2r

2a
f ′(η), (2. 15)

w = −1
r

∂ψ

∂r
= −V2f(η). (2. 16)

The velocity components given in Eqs. (2. 15 )-(2. 16 ) are compatible with the continuity
Eq. (2. 10 ) and hence represent a possible fluid motion. Eqs. (2. 11 )-(2. 12 ) in view of
above similarity transformations (2. 15 )-(2. 16 ) are reduced after eliminating the pressure
term, as follows:

f (iv) + R(ff ′′′ −M2f ′′) = 0, (2. 17)

where R =
ρV2a

µ
is the Reynolds number and M =

√
σeaB2

0

ρV2
is the Hartmann number.

Integrating Eq. (2. 17 ) w.r.t η, we get

f ′′′ + R(ff ′′ − f ′2

2
−M2f ′) = k, (2. 18)

where k is a constant of integration.
The boundary conditions (2. 13 ) in dimensionless form can be written as:

f(−1) = 1−A, f(1) = 1,
f ′(−1) = 0, f ′(1) = 0.

]
(2. 19)

The shear stress on the disks is defined as:

τω = −µ(
∂u

∂z
)|z=±a = −µ

rV2

2a2
f ′′(±1). (2. 20)

We have to solve Eq. (2. 18 ) subject to the boundary conditions (2. 19 ).

3. NUMERICAL SOLUTION

The governing ordinary differential Eq. (2. 18 ) is highly non linear and we use a finite
difference based algorithm scheme to seek its numerical solution subject to the associated
boundary conditions (2. 19 ). Following Chamkha and Issa [23] and Ashraf et.al [24, 25]
the order of Eq. (2. 18 ) can be reduced by one with the help of substitution q = f ′. Now
we have to solve the boundary value problem consisting of the folowing equations:

q = f ′ =
df

dη
, (3. 1)

q′′ + R(fq′ − q2

2
−M2q) = k. (3. 2)
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subjected to the boundary conditions:

f(−1) = 1−A, f(1) = 1
q(−1) = 0, q(1) = 0.

]
(3. 3)

For the numerical solution of the above boundary value problem we discretize the domain
[-1, 1] uniformly with step h. Simpson’s rule Gerald [26] with the formula given in Milne
[27] is applied to integrate Eq. (3. 1 ). The central difference approximations are used to
discretize Eq. (3. 2 ) at a typical grid point η = ηn of the interval [-1, 1]. The resulting
finite difference equation is given by:

(R
h2

2
qn + 2 + RM2h2)qn + kh2 = (1 +

h

2
Rfn)qn+1 + (1− h

2
Rfn)qn−1, (3. 4)

where h represents the grid length, qn ≈ q(ηn) and fn ≈ f(ηn).
The above algebraic Eq. (3. 4 ) is solved iteratively by using SOR method, Hildebrand

[28] subject to the appropriate boundary conditions (3. 3 ). In order to accelerate the itera-
tive procedure, to improve the accuracy of the solution and to have an estimate of local as
well as global discretization errors, we use the solution procedure which is mainly based
on the algorithm described in Syed et. al [29]. The iterative procedure is stopped if the
following criterion is satisfied for four consecutive iterations:

Max(
∥∥∥q(i+1) − q(i)

∥∥∥
2
,
∥∥∥f (i+1) − f (i)

∥∥∥
2
) < TOLiter , (3. 5)

where TOLiter prescribed the error tolerance. Here we have taken error tolerance at least
10−12 for our numerical calculations. The constant of integration k is determined by hit
and trial requiring that the computed value of f at the upper boundary matches with the
given boundary value of f up to at least four decimal places.

4. RESULTS AND DISCUSSION

The objective of the present work was to examine numerically the flow characteristics
associated with the asymmetric steady laminar incompressible viscous flow of an electri-
cally conducting fluid between two stationary coaxial parallel porous infinite disks in the
presence of a uniform stationary magnetic field. Special attention is given to this section
for the presentation of our findings in tabular and graphical forms together with the dis-
cussion and their interpretations. The numerical results for the velocity field and the shear
stresses at the two disks are obtained for a range of values of the permeability parameter
A, the Reynolds number R and the Hartmann number M . To obtain the accuracy of the
solutions, the results are computed for three grid sizes h = 0.02, 0.01, 0.005 and then
extrapolated on the finer grid using Richardson’s extrapolation [30]. In order to establish
the validity of our numerical scheme, a comparison of numerical values of axial velocity
is given in Table 1. Excellent comparisons validate our numerical computations. Other
source of validity of our numerical results is Fig.2 in which the present results for radial
velocity for R = −0.5 & M = 0.4 are compared with the published literature results
given by Elkouh [22]. The comparisons are found to be in a good agreement. The value
of the constant of integration k taken for each set of values of the parameters A,R&M
considered in the present work is given in Tables 2-4 against the corresponding case.

In order to understand the effect of the permeability parameter A and the Reynolds
number R on the flow fields, it can be first noted that A is determined by the ratio of
the injection velocities at the surfaces of the two porous disks whereas R is based on the
injection velocity at the upper disk. The case R = 0, corresponds the problem of the flow
with impermeable disks. In this situation A will be arbitrary and has no effect on the flow
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in view of the relation V1= (1- A)V2 (by definition of A given in Eq. (2. 1 )), where V1= 0
=V2. In the case when the magnitude of R is increased for a fixed value of A, it predicts
the situation in which the injection velocities at the upper and lower disks are increased
keeping their ratio constant. On the other hand if A is increased from 1 to 2 and R is fixed,
it represents the situation in which, for a given injection velocity at the upper disk, the
injection velocity at the lower disk is increased from zero to the magnitude of that at the
upper disk. For R < 0, the case A = 1 corresponds to the problem of flow in which the
lower disk is impermeable and the upper disk is permeable, 1 < A < 2 corresponds to the
non zero and unequal injection velocities at the lower and upper disks and A = 2 represents
the problem of flow symmetrically driven by equal injection velocities at both the disks.

Table 2 reveals the influence of permeability parameter A on shear stresses at the disks
for fixed values of R &M . It is concluded that an increase in the permeability parameter A,
leads to a reduction in shear stress at the lower disk while at the upper disk the magnitude
of the shear stress increases from its minimum value to its maximum value. It can be
seen from Table 2 that for the case A = 2, the shear stresses become equal at the upper
and lower disks reflecting the symmetry of the problem. Table 3 illustrates the effect of
Reynolds number R on the shear stresses at the disks for A = 1.4& M = 1.2. With an
increase in the injection parameter R, the shear stress at the lower disk increases and on
the other hand a decrease in the magnitude of the shear stress is noted at the upper disk.
It is observed that for R = 0, the shear stresses are same at the disks and thus showing
the symmetry of the problem. The influence of the Hartmann number M is tabulated in
Table 4, for a fixed value of A &R. From Table 4 we note that the Hartmann number M
enhances the shear stresses at the boundaries of the disks.

The predictions based on flow behaviors between the porous disks are presented graph-
ically for different parameters in Figs. 3-8. Figs. 3-4 show the velocity profiles for
R = −10 & M = 0.8 with different values of the permeability parameter A. The ve-
locity profiles in the axial direction under different permeability parameter illustrated in
Fig. 3 are helpful in finding the position of viscous layer which is developed due to the
injection at the two disks. It is noted that by increasing the values of A, the position of
the viscous layer approaches towards the central plane z = 0. The axial velocity profiles
are lower for increasing values of A. Fig. 4 depicts the velocity profiles along the radial
directions for various values of A. It is observed that the radial velocity profiles rise as we
increase the values of A and the velocity profile becomes symmetric for the case A = 2
where it attains the maximum value.

Fig. 5 plots the influence of Reynolds number R on the axial velocity profiles for typical
values of A &M . It is apparent from Fig. 5 that the axial velocity takes its dimensionless
value -1 at the lower disk and 1 at the upper disk with a point of inflection near the central
plane z = 0 where the concavity is changed. It is seen that by increasing the magnitude
of R from 0 to 40, the velocity profiles increase significantly. Due to the restrictions
of axial velocity being -1 at the lower disk and 1 at the upper disk, a slight increase in
the axial velocity profiles is observed as the magnitude of R is increased i-eR → −∞.
Fig. 6 presents the effect of R on the radial velocity profile. The radial velocity profile is
symmetric for R = 0 with respect to the central plane z = 0 and has the point of maximum
velocity at R = 0. These profiles become asymmetric and shift towards the lower disk due
to the inflow velocity V2 at the upper disk. It is seen that for increasing values of R the
profiles decrease near the upper disk and increase near the lower disk.

The behavior of the Hartmann number M for fixed values of A & R is shown graph-
ically in Figs. 7-8. Fig. 7 presents an interesting effect of M on the axial velocity. The
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profiles fall at the upper disk whereas a small increase near the lower disk is observed by
increasing the values of M . The radial velocity profiles shift towards the lower disk and
the point of maximum velocity decreases as M is increased. Furthermore it is also noted
that these profiles move away from the disks but a significant change is seen at the upper
disk as shown in Fig. 8.

5. CONCLUSIONS

In the present work numerical solution of the problem of MHD asymmetric flow of an
electrically conducting fluid between two infinite parallel porous disks is investigated using
a suitable similarity transformation. Following conclusions can be made:

(1) Shear stresses are reduced at the lower disk and are increased at the upper disk
by increasing permeability A whereas an opposite trend can be noted in case of
Reynolds number R.

(2) The magnetic field causes an increase in values of shear stresses on the boundaries
(disks).

(3) The position of viscous layer developed due to large injection moves towards the
central plane z = 0 as we increase A.
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Nomenclature
A permeability parameter
B0 magnetic field intensity
b induced magnetic field
E electric field
h grid size
J current density
k constant of integration
M Hartmann number
R Reynolds number
TOLiter prescribed error tolerance
V1, V2 injection velocities at the lower and upper disks respectively
u,w velocity components along the radial and axial directions respec-

tively
η similarity parameter
ρ density
µ viscosity
υ kinematic viscosity
ψ stream function
σe electrical conductivity
µm magnetic permeability

TABLE 1. Dimensionless axial velocity f(η) on three grid levels and
their extrapolated values for A = 1.2, R = −20 and M = 0.4.

η f(η)
h = 0.02 h = 0.01 h = 0.005 Extrapolated

Value
-1.0 -0.2 -0.2 -0.2 -0.2
-0.8 -0.13873 -0.13874 -0.13874 -0.13874
-0.6 0.015705 0.015685 0.015674 0.01567
-0.4 0.212566 0.21253 0.212511 0.212503
-0.2 0.408992 0.408947 0.408922 0.408912
0 0.583823 0.583778 0.58375 0.58374
0.2 0.730454 0.730412 0.730383 0.730372
0.4 0.846692 0.846653 0.846624 0.846612
0.6 0.931164 0.931128 0.931098 0.931086
0.8 0.982675 0.98264 0.982609 0.982597
1.0 1.000092 1.000058 1.000028 1.000016
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TABLE 2. Shear stresses at the disks for R = −10, M = 0.8 and
various values of A.

A f ′′(−1) f ′′(1) k
1.0 3.2842 0.9289 -9.8545
1.2 3.0954 1.1821 -12.5405
1.4 2.8918 1.4726 -15.6245
1.6 2.7342 1.8042 -19.1472
1.8 2.6378 2.1781 -23.1204
2.0 2.5936 2.5936 -23.1204

TABLE 3. Shear stresses at the disks for A = 1.4, M = 1.2 and
various values of R.

R f ′′(−1) −f ′′(1) k
0 2.1000 2.1000 -2.10005
-5 2.9464 1.9067 -11.817
-10 3.3323 1.8899 -21.3358
-15 3.5665 1.8839 -30.7645
-40 4.0636 1.8723 -77.505
-65 4.2439 1.8680 -124.062
-90 4.3381 1.8657 -170.57

TABLE 4. Shear stresses at the disks for A = 1.2, R = −20 and
various values of M .

M f ′′(−1) −f ′′(1) k
0.0 3.3069 0.7999 -15.998
0.4 3.3722 0.8802 -17.7447
0.8 3.6297 1.1245 -23.19
1.2 4.1361 1.5297 -32.664
1.6 4.8451 2.0753 -46.288
2.0 5.6813 2.7322 -64.012
2.4 6.5921 3.4736 -85.755
3.2 8.5312 5.1317 -141.075
4.0 10.5475 6.9396 -211.98
6.0 15.6995 11.7792 -456.876
8.0 20.8730 16.8030 -798.01
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FIGURE 1. Geometry of the disks

FIGURE 2. Comparison of the present dimensionless radial velocity profile with
literature results (Elkouh [22]) for R = −0.5 and M = 0.

FIGURE 3. Variation of dimensionless axial velocity for R = −10, M = 0.8 and
various values of A
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FIGURE 4. Variation of dimensionless radial velocity for R = −10, M = 0.8 and
various values of A

FIGURE 5. Variation of dimensionless axial velocity for A = 1.4, M = 1.2 and
various values of R

FIGURE 6. Variation of dimensionless radial velocity for A = 1.4, M = 1.2 and
various values of R
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FIGURE 7. Variation of dimensionless axial velocity for A = 1.2, R = −20 and
various values of M

FIGURE 8. Variation of dimensionless radial velocity for A = 1.2, R = −20 and
various values of M


